metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Melissa L. Matthews and Michael Webster*

Department of Chemistry, University of Southampton, Southampton SO17 1BJ, England

Correspondence e-mail: m.webster@soton.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.010 Å Disorder in solvent or counterion R factor = 0.054 wR factor = 0.135 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(nitrato- $\kappa^2 O, O'$)tris(triphenylphosphine oxide- κO)terbium(III) acetone sesquisolvate

Received 30 April 2003 Accepted 2 May 2003

Online 16 May 2003

The title compound, $[Tb(NO_3)_3(C_{18}H_{15}OP)_3]\cdot 1.5(CH_3)_2CO$, contains discrete molecules with nine-coordinate Tb atoms, all nitrate groups being bonded as symmetrical bidentate ligands; Tb-O(P) = 2.307 (4), 2.309 (4) and 2.295 (4) Å, and Tb-O(N) = 2.467 (4)-2.539 (4) Å).

Comment

As part of a continuing study into the solution equilibria found for lanthanide complexes of phosphine oxides, the complex [Tb(NO₃)₃(Ph₃PO)₃]·1.5Me₂CO, (I), was isolated (Cousins & Hart, 1967). The crystal structure reveals a nine-coordinate terbium bonded to three bidentate nitrate groups and three phosphine oxides, with 1.5 acetone molecules in the asymmetric unit, the latter arising from a partial occupancy for one solvent molecule. The three (P)O-Tb-O(P) angles (Table 1) show that this complex may be described as mer-(pseudo)octahedral, where the nitrate ligands have been replaced conceptually by monodentate ligands. The nitrate groups are symmetrically bonded, with the $O_c - N - O_c$ angle smaller (average 116°) than the ideal value in the free D_{3h} NO₃⁻ anion, where O_c is a coordinated O atom. As described previously (Valle et al., 1986), the $N-O_c$ distances are ca 0.05 Å longer than $N-O_b$ where O_t is the terminal O atom. The M-O-P angles are very variable among phosphine oxide complexes; in the present compound they are 154.7 (3), 159.6 (3) and 173.8 (3)°.

Five other structurally characterized compounds with the same stoichiometry are known for Y (Deakin *et al.*, 2000), La (Huang *et al.*, 1987), Ce (Lin *et al.*, 1994), Sm (Sakamoto & Miyake, 1993) and Eu (Valle *et al.*, 1986), and all have a similar structure and are solvated ($2Me_2CO$ for Ce, Sm and Eu).

The Tb-O(P) and Tb-O(N) distances are a little longer than the corresponding values found in $[Y(NO_3)_3(Ph_3-PO)_3] \cdot xCH_2Cl_2$ (Deakin *et al.*, 2000), where the Y compound is again *'mer*'; this reflects the relative ionic radii $[M^{3+}$ (eightcoordinate): Y 1.159 Å and Tb 1.180 Å (Shannon, 1976)].

Experimental

Cooling a boiling acetone solution of $Tb(NO_3)_3 \cdot 6H_2O$ and Ph_3PO (1:3) gave the title compound. Suitable crystals were isolated from the reaction product.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

$$\begin{split} & [\text{Tb}(\text{NO}_3)_3(\text{C}_{18}\text{H}_{15}\text{OP})_3] \cdot 1.5\text{C}_3\text{H}_6\text{O} \\ & M_r = 1266.88 \\ & \text{Monoclinic}, \ P_{2_1}/n \\ & a = 11.0612 \ (10) \text{ Å} \\ & b = 19.180 \ (2) \text{ Å} \\ & c = 27.641 \ (4) \text{ Å} \\ & \beta = 94.895 \ (7)^{\circ} \\ & V = 5842.7 \ (12) \text{ Å}^3 \\ & Z = 4 \end{split}$$

Data collection

Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{min} = 0.847, T_{max} = 0.873$ 40 261 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(E^2) + (0.0194P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.054$	$w = 1/[0 (1_0) + (0.01) + 1)$ + 0 57 P]
$wR(F^2) = 0.135$	where $P = (E^2 + 2E^2)/3$
S = 1.03	$(\Lambda/\sigma) = 0.002$
10.247 reflections	$\Delta \alpha = 1.24 \text{ e} \text{ Å}^{-3}$
711 parameters	$\Delta \rho_{\text{max}} = 1.24 \text{ CA}$ $\Delta \rho_{\text{max}} = -0.83 \text{ e} \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELYL07
ri-atom parameters constrained	Extinction coefficient: 0.00170 (16)
	Extinction coefficient. 0.001/9 (10)

 $D_x = 1.440 \text{ Mg m}^{-2}$

Cell parameters from 41 633

Mo $K\alpha$ radiation

reflections

 $\theta = 2.9-27.5^{\circ}$ $\mu = 1.36 \text{ mm}^{-1}$

T = 120 (2) K

 $R_{\rm int}=0.111$

 $\theta_{\rm max} = 25.0^\circ$

 $h = -13 \rightarrow 12$

 $k = -22 \rightarrow 22$

 $l = -32 \rightarrow 31$

Block, colourless

 $0.16 \times 0.16 \times 0.10 \text{ mm}$

10 247 independent reflections

6620 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Tb1-O1	2.307 (4)	Tb1-O8	2.505 (4)
Tb1-O2	2.309 (4)	Tb1-O10	2.459 (4)
Tb1-O3	2.295 (4)	Tb1-O11	2.539 (4)
Tb1-O4	2.467 (4)	P1-O1	1.502 (4)
Tb1-O5	2.492 (5)	P2-O2	1.508 (5)
Tb1-O7	2.476 (4)	P3-O3	1.504 (5)
O1-Tb1-O2	85.51 (15)	P1-O1-Tb1	154.7 (3)
O1-Tb1-O3	84.27 (15)	P2-O2-Tb1	159.6 (3)
O3-Tb1-O2	150.09 (14)	P3-O3-Tb1	173.8 (3)
O4-Tb1-O5	51.43 (16)	O6-N1-O5	122.4 (6)
O7-Tb1-O8	51.26 (16)	O6-N1-O4	121.5 (6)
O10-Tb1-O11	51.23 (13)	O5-N1-O4	116.1 (5)

The large displacement parameter values of all the atoms of one of the acetone solvent molecules suggested partial occupancy, and the site-occupancy factor (sof) was set to 0.5 to bring the values close to those of the other acetone molecule. The atoms with sof of 0.5 were refined isotropically. H atoms were placed in calculated positions with a displacement parameter related to that of the bonded C atom; $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for phenyl H and 1.5 for methyl H atoms. The maximum electron-density peak is 1.5 Å from Tb1.

Data collection: *COLLECT* (Hooft, 1998) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *COLLECT* and *DENZO*; data reduction: *COLLECT* and *DENZO*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976).

Figure 1

The molecular structure of $[Tb(NO_3)_3(Ph_3PO)_3]$, showing the atomlabelling scheme. Ellipsoids are drawn at the 50% probability level; H atoms and the Tb1 label have been omitted for clarity.

We thank the EPSRC for support and Professor M. B. Hursthouse for access to the EPSRC diffractometer.

References

- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Cousins, D. R. & Hart, F. A. (1967). J. Inorg. Nucl. Chem. 29, 1745-1757.
- Deakin, L., Levason, W., Popham, M. C., Reid, G. & Webster, M. (2000). J. Chem. Soc. Dalton Trans. pp. 2439-2447.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Huang, C., Xu, R., Zhou, Y., Xu, G., Guo, F. & Zhu, N. (1987). Wuli Huaxue Xuebao (Acta Phys. Chim. Sin.), 3, 491–500; Chem. Abstr. (1988). 108, 123246r.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lin, J., Hey, E. & von Schnering, H. G. (1994). Private communication to the Cambridge Structural Database. Refcode LENHIV. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sakamoto, J. & Miyake, C. (1993). Kidorui, 22, 154–155; Chem. Abstr. (1995), 122, 278608y.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Valle, G., Casotto, G., Zanonato, P. L. & Zarli, B. (1986). Polyhedron, 5, 2093–2096.